
UPPSALA UNIVERSITY

COURSE NAME: PARALLEL AND DISTRIBUTED PROGRAMMING

COURSE CODE: 1TD070

Malaria simulation using Monte Carlo computations combined with Stochastic Simulation Algorithm

Author:
Alhassan JAWAD

Supervisor: Roman Iakymchuk

21-05-2024



Malaria simulation using Monte Carlo computations
combined with Stochastic Simulation Algorithm

Abstract

Using MPI libraries, this project simulates the spread of a malaria epidemic using
the Monte Carlo method in conjunction with the stochastic simulation algorithm.
This project leads to the conclusion that the created software is perfectly parallel and
scalable, and that it can generate accurate simulations of malaria epidemics. There
is still room for improvement. For example, thread-level optimization utilizing the
pthread or OpenMP library to further parallelize the program may be carried out.

Submitted to the course PARALLEL AND DISTRIBUTED PROGRAMMING (1TD070).
Please do not redistribute without permission.



1 Introduction

1.1 Background

Malaria is a prehistoric disease that has been investigated and researched for hundreds and hundreds
of years. Despite that, it still has an enormous social, economic, and health impact, with it still
remaining a major public health issue in close to 85 nations designated as endemic to the disease in
2022 [1]. Nowadays, as technology has advanced with the power to simulate different phenomena,
the precise framework that mathematics and mathematical models provide for comprehending the
dynamics of disease transmission inside and between hosts and parasites is crucial.

Mathematical models are a way to represent complex disease data with simpler equations. Researchers
select the most relevant biological and clinical information to capture how the disease develops and
spreads. With that said, an approximation of the complicated reality is called a model, and the
processes under study and the intended extrapolation determine the model’s structure [2].

Monte Carlo Computations/Simulation

A large family of computing algorithms known as Monte Carlo techniques, or Monte Carlo ex-
periments, relies on iterative random sampling to get numerical results. The fundamental idea is
to leverage randomness to find solutions to issues that, in theory, may be deterministic. They are
particularly helpful when using alternative ways is difficult or impossible, and they are frequently
utilized in mathematics and physical issues. Some of the well-known applications of Monte Carlo
methods include estimating pi and approximating integrals [3] [4].

Stochastic Simulation Algorithm

A system containing variables that have the potential to vary stochastically (i.e., randomly) with
discrete probability is simulated using stochastic simulation. These random variables’ realizations are
created and added to a system model. After recording the model’s outputs, the procedure is repeated
using a fresh set of random data. Until a sufficient quantity of data is collected, these procedures are
repeated. Ultimately, the distribution of the outputs provides a framework of expectations for the
ranges of values that the variables are more or less likely to fall within, in addition to the most likely
predictions [5].

1.2 Problem Description

The project’s goal is to use Monte Carlo (MC) Computations in addition to the Stochastic Simulation
Algorithm (SSA) to model the spread of a malaria epidemic. The program will execute in parallel on
n processors, and p separate stochastic simulations will be performed for each CPU. All nxp test
results will be gathered, and all data pointing to susceptible humans will be stored for later usage.

Moreover, statistically grounded visualization (such as histograms) and analysis of the acquired
data will be carried out. Tests such as strong scaling and weak scaling will be carried out on the
parallelized code.

1.3 Hardware Specifications

All performance tests were conducted on the RACKHAM cluster, which is part of UPPMAX, a
high-performance computing resource at Uppsala University [6]. The Rackham cluster is configured
to have an 486 nodes of 10-core Intel Xeon V4 CPU’s each at 2.20 GHz/core, a minimum of 128 GB
memory and a CentOS 7 operating system (OS) [7].

2



2 Algorithms

According to the project instructions given, N parallel simulations should be completed and gathered
Monte Carlo simulation for a malaria outbreak in conjunction with the stochastic simulation algorithm.

This means that the simulation function will have 2 input parameters The first is the number of
simulations to run while the second parameter I put as the name of the output file for where to write
the results of the simulations (values to be used for histogram computations). The output file will
contain 2 lines where the first line contains 21 integer values which are the range of the histogram.
The second line will be containing the histogram integer values of susceptible humans per intervals.

The following 2 figures will show the given pseudo-codes for the MC algorithm together with SSA.

Figure 2.0.1: The MC algorithm as pseudo-code

Figure 2.0.2: Stochastic Simulation Algorithm

Regarding each simulation, Gillespie’s direct method is used which is shown in figure 2.0.2. Further-
more, we are using the MPI library, making the calculations’ parallelizible. And as each iterations
computations are independent of each other, we can make the whole code script perfectly parallelized.
Another consequence of the code being perfectly parallelizble is that we will not need to take into
consideration the case where N is not divisible by p. As a result, if n nodes/processes are provided
for N experiments, each node will do p = N/n experiments, and the final data will be gathered and
stored by this node.

What we also have been given regarding the algorithms and the used variables are:

P =



1 0 0 0 0 0 0
−1 0 0 0 0 0 0
−1 0 1 0 0 0 0
−1 1 1 0 0 0 0
0 −1 0 0 0 0 0
0 −1 0 1 0 0 0
0 −1 −1 1 0 0 0
0 0 −1 0 1 0 0
0 0 −1 −1 1 0 0
0 0 0 −1 0 1 0
0 0 0 −1 −1 1 0
0 0 0 0 −1 0 1
0 0 0 0 −1 −1 1
1 0 0 0 0 −1 0
1 0 0 0 0 0 −1
0 0 0 0 0 0 −1



. (2.0.1)

with length of vector x = 7 and length of w = 15. R = 15. The initial x0 =
[900; 900; 30; 330; 50; 270; 20], T=100 and the function prop is given so we don’t need to write
it on our own.

Our first task was to "perform the necessary collection of the results (within the MPI program) and
plot a histogram".

3



2.1 Sequential part of the code

The only part of the code that cannot be parallelized are the writing to the output as it needs to be
done at the final stage of the code after all different calculations are done across all processes.

We also have the helper functions such as step 3-4 and step step 7 of the SS algorithm (figure 2.0.2).
Those function’s will not be parallelized as they are not something that can be done across multiple
processes to make the code faster.

2.2 Parallelized part of the code

Inside the main part of the code, we start by initializing the MPI environment, and getting the size of
the process pool as well as initializing a variable to keep track of the rank of the current processor.

Afterwards, we made some variable declarations as well as memory declarations to be able to run the
SSA and MC algorithm. After starting a custom random number generator and writing the state of
the matrix shown in 2.0.1, I started the MC algorithms by creating a for-loop. Inside it I wrote the
code for the Gillespie’s direct method (SSA).

After writing the algorithms and collecting the susceptible human data that we are after, I used
MPI_Allreduce to get the global minimum and maximum histogram intervals from across all
processes.

Finally came the part of the histogram value calculations where we computed e.g. the range of the
histogram and then stored the values in the resulting array. At last, we send the values of the resulting
array to a helper function that will write the values to an output file in the format stated above.

And to not get any segmentation errors, I didn’t forget to free the resources that I allocated for some
of the variables.

The time complexity of all N simulations is proportional to the number O(N), as the cost of each
simulation is constant => The computation’s time complexity is O(N/n) if n processors are available

2.3 Revision 1 Changes

It was decided, after conferring with one of the teachers, that changes to the random number generator
seed were required in order to guarantee that every processor utilized a distinct seed. The goal
of parallel computing is defeated if the random number generator in each process uses the same
seed, as this would result in identical random number sequences in all of the processes. So for each
processor, we start the random number generator with a distinct seed, improving the simulation
findings’ statistical validity and resilience.

To make each processors seed different, I modified the srand() and the parameters I used where
time(NULL) + rank. time(NULL) returns the current time in seconds since the Epoch (January 1,
1970) and it introduces a type of randomness as each seed will be different from all others [8].

4



3 Experiments and results

Note that in the performance tests, the time spent on message passing and local computation on
each processor was included in the counted time in our performance test (output file writing was
excluded). All tests are one on a parallelized code with optimization flags -std=c99 and -O3 enabled
when compiling the code.

According to the instructions, for 3 simulation values that are larger than 106, provide the bounds
of the histogram intervals and plot the histogram. The histogram interval bounds are provided by
running the simulation code named main.c that I parallelized using MPI. The fallowing table shows
the values gotten:

Table 3.0.1: Statistics for 3 simulation values
N Mean Time (s) Standard Deviation (s)
106 606.89 58.54

12 ∗ 105 606.87 58.72
15 ∗ 105 606.74 58.59

Regarding the table above, the mean time is taken from 5 reruns of each test case while the standard
deviation is computed using eq. 3.0.1.

s =

√∑n
i=1(xi − x̄)2

n− 1
(3.0.1)

where s represents the sample standard deviation, xi is the individual time value from each rerun, x̄ is
the mean value across all reruns and n is the number of reruns.

To make sure that the obtained data will reasonable a normal distribution for large datasets N, I
extracted the contained data values from the output files and plotted a histogram using python.

As we can see, all the figures show a normal distribution which means that for large datasets, this
Malaria simulations code gives us data that have a normal distribution framework, according to what
the instructions assumed.

5



3.1 Strong Scalability

Regarding Strong Scalability, the problem size, number of simulations in this case, remains fixed
while the numbers of processes are changed. This leads to a situation where we get reduced workload
per processor as when increase the number of processes used. I tested several situations with a fixed
problem size of N = 105. Every test case is run5 times, and the time cost is presented using the
lowest time required. The number of processes was varied between 1-16 processes and the following
table shows the results of these experiments:

Table 3.1.2: Strong Scalability Performance tests
Total N Processors Time (s) Speedup Efficiency
N = 105 1 130.8 1.00 1
N = 105 2 66.5 1.97 0.99
N = 105 4 34.5 3.79 0.95
N = 105 5 27.3 4.81 0.96
N = 105 8 17.1 7.65 0.96
N = 105 10 13.5 9.62 0.96
N = 105 16 8.74 14.95 0.93

What the table shows is that when the number of processors increases, the program’s performance
increases proportionally. Regrettably, the optimal speedup cannot be achieved because of the time
spent on the system’s communication etc. On the bright side, the actual speedup is really near to the
optimal speedup line, suggesting that the program may scale well for problems of fixed sizes. The
following figure shows the actual speedup presented above versus the optimal speedup.

Figure 3.1.1: Actual Speedup vs Optimal Speedup

6



3.2 Weak Scalability

Regarding Weak Scalability, the problem size and the number of processors are both changed
proportionally to each other. As a result, each processor has a constant workload no matter if we
decrease or increase the number of processes. For the following performance tests, we fixed the
problem size per process as N = 104 simulations. Similar to strong scalability testing, every test
case is run 5 times, and the test case’s time cost is displayed using the minimal time cost.

Table 3.2.3: Weak Scalability Performance Tests
Workload per processes Processors N Time (s) Efficiency

104 1 10000 12.1 1
104 2 20000 12.5 0.97
104 4 40000 12.8 0.94
104 5 50000 13.3 0.91
104 8 80000 14.2 0.85
104 10 100000 14.2 0.85
104 16 160000 14.2 0.85

As the table shows, when the calculation quantity (problem size) for each processor is fixed, the
program’s efficiency typically stays steady and extremely close to 1, even though it does somewhat
decline as the number of processors grows. The following figure shows efficiency plotted in a graph
for better readability:

Figure 3.2.2: Efficiency of weak scaling

From what we can see from figure 3.2.3, after an initial decrease up to 5 processes, efficiency keeps a
steady pace at 0.85 for different number of processes.

The initial decrease of efficiency is due to many reasons, but for my case I suspect that these 2 are the
most probable reasons:

• Communication Overhead
• Amdahl’s Law that says that even perfectly parallelized code that have small serial code will

have decrease in efficiency.

The reason for it not decreasing more is that the code is perfectly parallelized where every single
simulation is completely autonomous, and processor-to-processor communications is only needed
once, upon completion of the simulation and data collection.

7



4 Discussion

There are 2 times in my code where there is a need for communication between processes.

Regarding the first communication occasion:

It was following the computation of local maximum and minimum values in each process. Inter-
process communication was necessary to enable each process to get the global maximum and
minimum value. There, I used the MPI_Allreduce() function to reduce all local min/max values and
remake them in global min/max values that are "shared" everywhere between the processes.

An alternative method was to compute the global minimum and maximum locally using a Send/Recv
pair, and then broadcast the results to other processes. Another method is to use the MPI_Allgather()
function to collect all maximum and lowest values, then locally compute the global ones.

When comparing all these functions, I chose to use MPI_Allreduce() as it was a single line command
that did multiple steps and it’s also the most efficient method because it just requires one system
communication call.

Regarding the second communication occasion:

It was following the completion of local statistics, where local data collecting is necessary. There I
used MPI_Reduce() to gather all data and reduce them until I got a global data to be "shared" between
all processes.

An alternative method was to use the MPI_Gather() function to store all arrays into a single, larger
array inside a single process. Afterwards, I needed to sum data from each process and store it in
another array and redo the previous step again. In contrast, MPI_Reduce is far simpler and allows for
data collection and summation in a single function call.

Further improvements can be made like for example thread-level optimization using Pthreads or
OpenMP to parallelize the program further. Even in-line functions can hopefully be used to replace
the place of some function callings thus improving e.g. efficiency.

8



5 Referencens

[1] - P. Venkatesan, The 2023 WHO World malaria report, The Lancet Microbe, vol. 5, no. 2, pp.
E51-E52, Feb. 2024. doi: 10.1016/S2666-5247(24)00016-8 [Accessed: May 21, 2024]

[2] - S. Mandal, R. R. Sarkar, and S. Sinha, Mathematical Models of Malaria—A Review, Malaria
Journal, vol. 10, Jul. 2011, Art. no. 202. doi: 10.1186/1475-2875-10-202 [Accessed: May 21, 2024]

[3] - N. Singh Chauhan, Introduction to Monte Carlo Simulation in Statistics, The AI Dream, Sep 19,
2021. [Accessed: May 22, 2024]

[4] - Monte Carlo method, Wikipedia, The Free Encyclopedia, [Online]. Available:
https://en.wikipedia.org/wiki/Monte_Carlo_method. [Accessed: May 22, 2024].

[5] - Stochastic Simulation, Wikipedia, The Free Encyclopedia, [Online]. Available:
https://en.wikipedia.org/wiki/Stochastic_simulation. [Accessed: May 22, 2024].

[6] - Uppmax, Uppsala University, [Online]. Available: https://www.uu.se/en/centre/uppmax. [Ac-
cessed: May 23, 2024].

[7] - Rackham Cluster, Uppsala University, [Online]. Available:
https://www.uu.se/centrum/uppmax/resurser/kluster/rackham. [Accessed: May 23, 2024].

[8] - srand, GeeksForGeeks, [Online]. Available: https://www.geeksforgeeks.org/rand-and-srand-in-
ccpp/. [Accessed: June 5, 2024].

9


	Introduction
	Background
	Problem Description
	Hardware Specifications

	Algorithms
	Sequential part of the code
	Parallelized part of the code
	Revision 1 Changes

	Experiments and results
	Strong Scalability
	Weak Scalability

	Discussion
	Referencens

