
UPPSALA UNIVERSITY

COURSE NAME: PARALLEL AND DISTRIBUTED PROGRAMMING

COURSE CODE: 1TD070

One-dimensional stenscil application

Author: Alhassan JAWAD

Supervisor: Roman Iakymchuk

Date: 13-04-2024

Assignment 2

1 Problem formulation1

In this assignment, we are going to apply a one-dimensional stencil on an array of elements rep-
resenting function values f(x) for a finite set of N values x0, x1, ..., xN−1 residing on the interval
0 ≤ x < 2× π for which each value xi = i× h where h = 2π

N . Applying the stencil on an element
v0 representing the function value f(xi) simply means computing the sum:

1

12h
× v−2 −

8

12h
× v−1 + 0× v0 +

8

12h
× v+1 −

1

12h
× v+2 (1.0.1)

where v−j is the element j steps to the left of v0 (that is, f(xi−j)). Likewise, v+j is the element j
steps to the right of v0 (that is, f(xi+j)).2 This sum approximates the first derivative f (x) for x = xi.

My task is to parallelize a short program that applies this stencil on a set of values.

1.1 Provided files

1.1 Provided files

The following are files were provided with the assignment description:

• A .tar compressed file containing:

– The serial stencil code to be parallelized (stencil.h & stencil.c)
– A makefile to build the program
– A shell-script to be used be as a preliminary check before submission

1.1.1 The Serial Code

Summarizing important information about the serial code stencil.h:

• First argument: Input file path/name

• Second argument: Output file path/name

• Third argument: Integer specifying how many times the stencil will be applied

• Input file must contain N + 1 numbers

– First number is N (number of function values)
– Subsequent numbers are the actual function values.

• Output file will contain stencil application (the results)

The program reads data from an input file (using the function read_input), Performs a stencil
operation on the data, and writes the final result to an output file (using the function write_output).
It measures execution time without accounting for input/output operations (File I/O) and treats edges
as neighbors (periodic boundaries).

1Taken directly from the Assignment PDF
2For this case, we assume that the middlemost stencil weight is 0, which is not always the case!

• There is no need to parallelize read_input or write_output.
• Due to usage of periodic boundaries, the last element in the array is considered as left

neighbor while the first element is considered right neighbor.

2

1.1.2 Requirements for the parallelized code

• I/O of the program should be handled by process unit 0
– It should evenly distribute the values among all processors (before the first stencil

application starts)
– It should collect the result when the last stencil application is completed

• Assume that the number of values N + 1 is divisible by the number of processors =>
(N + 1) modulo p = 0 for p = Number of processor units

• Each processor should apply stencil application on its received values and then store the
results in a different new array => each processor applies stencil on its values specified
number of times, each new application applied on last computed individual result

• Assume that the number of function values per process is larger than the stencil width
• Note that each process will need data that is stored on its neighbors nodes (to be able to

apply the stencil)!
• Each process have their own time measurement to apply the stencil, but only the largest

value among all processors should be printed.
– Include application of the stencil
– Include inter-process communication used on each step
– Don’t include time for executing I/O operations
– Don’t include time for initial distribution and final collection of data

Your parallelization is supposed to speed up the execution of the program, but you must not change
its functionality compared to the original program!

2 Parallelization

This section will give a brief description about the changes and modifications I did to transform the
serial code stencil.c into a parallelized code that I called stencil_mpi.c.

After starting the code in the same way by including stencil.h and the appropriate packages needed, I
declared the initial variables needed in the same way as done in the serial code. But here, I declared
a variable num_values that is responsible for the number of values in the input file, afterwards I
declared a data_chunk variable that is responsible for assigning the number values to be processed by
each process.

In the next section responsible for initializing the MPI Setup, the following listing shows what I did:

int rank, size;
MPI_Request request[4];
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

At the stage of reading the input file, I didn’t change how the read_input file is called as there is
no need to parallelize the I/O operations. However, I used dynamic memory allocation to allocate
memory space for the output in advance as it may balance memory efficiency and flexibility to
different input sizes without the need to modify the code later on. The following listing shows what I
did and where in the code:

if (0 == rank){
if (0 > (num_values = read_input(input_name, &input)))

...
// Dynamic memory allocation
if (NULL == (output = malloc(num_values * sizeof(double)))){

perror("Error: Couldn’t allocate memory for output");
return 2;

}
}

3

After initializing the MPI setup and reading the file, I used MPI_Bcast to broadcast the total number
of values from the root processor to all other processes, I also declared some constants and values
corresponding to the (1.0.1) formula shown at page 2. The corresponding memories are located
for the input and output and I used MPI_Scatter to scatter the input values randomly among all
processors.

MPI_Bcast(&num_values, 1, MPI_INT, 0, MPI_COMM_WORLD);
double h = 2.0*PI/num_values;
...
const double STENCIL[] = {1.0/(12*h), -8.0/(12*h), 0.0, 8.0/(12*h),

-1.0/(12*h)};
data_chunk = num_values/size;
double *local_input = (double *)malloc((data_chunk+EXTENT*2) * sizeof(double));
double *local_output = (double *)malloc((data_chunk+EXTENT*2) * sizeof(double));
MPI_Scatter(input, data_chunk, MPI_DOUBLE, local_input+EXTENT, data_chunk,

MPI_DOUBLE, 0, MPI_COMM_WORLD);

Following the above, I started a timer and defined the left/right neighbors of a process. I also made
some checks that guarantees what to do in case a neighbor doesn’t exist meaning that we go out of
bounds (periodic boundaries).

double start_time = MPI_Wtime();
int left = rank - 1;
if (left < 0) {left = size - 1;}
int right = rank + 1;
if (right >= size) {right = 0;}

I managed the passing of data between the processes by using the non-blocked version of send and
receives in MPI, this means that I used MPI_iSend to send data while MPI_Recv received the data
after a MPI_Wait is executed. The reason for using MPI_Wait is to avoid deadlock situations.

for (int s = 0; s < num_steps; s++){
MPI_Isend(local_input+EXTENT, EXTENT, MPI_DOUBLE, left, 0, MPI_COMM_WORLD,

&request[0]);
MPI_Isend(local_input+data_chunk, EXTENT, MPI_DOUBLE, right, 1,

MPI_COMM_WORLD, &request[2]);
MPI_Recv(local_input+data_chunk+EXTENT, EXTENT, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(local_input, EXTENT, MPI_DOUBLE, left, 1, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

// Apply stencil
...
...

MPI_Wait(&request[1], MPI_STATUS_IGNORE);
...
...

MPI_Wait(&request[3], MPI_STATUS_IGNORE);
...
...

// Swap input and output
...
...

}

4

Lastly, I stopped the timer, printed just the max time by using the MPI_Reduce() function, gathered
the outputs from the different processors using MPI_Gather and finally deallocated/freed the memory
locations saved for the outputs/inputs.

...
MPI_Reduce(&time_taken, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
MPI_Gather(local_output+EXTENT, data_chunk, MPI_DOUBLE, output, data_chunk,

MPI_DOUBLE, 0, MPI_COMM_WORLD);
if (rank == 0){

...

...
#ifdef PRODUCE_OUTPUT_FILE
if (0 != write_output(output_name, output, num_values)){

return 2;
}
#endif
free(input);
free(output);

}
free(local_input);
free(local_output);
MPI_Finalize();
return 0;

}

I didn’t modify anything in the I/O operations as the time is measured without taking into account
I/O operations.

The kind of communication I used was a combination of Non-blocking Sends and Receives and
Synchronization with MPI_Wait. Regarding the complete code, it will be attached with this report
under Appendix.

3 Performance

Performance experiments and execution times are measured on the snowy cluster (Linux Virtual
Machine) and the specifications of the server are noted in the following table:

Part Specifications
CPU Intel Xeon E5-2630 v4
Memory 128GB / 256GB / 1TB
Operating System CentOS 7
Server Name rackham.uppmax.uu.se

Table 3.0.1: Server Specifications used for performance experiments on the stencil application

According to the assignment instructions, I am supposed to do both a strong scaling and weak scaling
performance experiments on the parallelized stencil application code.

Before doing this measurements and performance experiments, I ran the code on a given input_file
with 96 number_of_values and 1/4 number_of_steps and made sure that the output_file contained the
correct results according to reference files that were provided for us on the rackham.uppmax.u.se
server. I had some segmentation fault errors in my code that made the job submission crash giving
core.163... files created but I solved the errors by rewriting the code.

5

3.1 Strong Scalability

In the instructions, it was stated that for strong scalability, it is enough to experiment with one file
size. So I experimented on the codes performance using the given input_file input1000000.txt with
num_values set at 2 meaning that the problem size is 2×106. The following 2 figures show MATLAB
generated plots for the speedup values vs number of processors:

(a) Execution time for processor unit 0 based on
number of processors used

(b) Maximum execution time for the computation
part of the code

Figure 3.1.1: Speedup vs Number of Processors

The following table shows the execution time for different number of processors and their speedup:

of Processors Speedup Time(s)
1 1 1.037897
2 1.77 0.587432
4 0.90 1.161231
8 0.77 1.343215

12 0.69 1.515424
16 3.42 0.302311
20 3.31 0.313565
24 3.37 0.308031
28 3.87 0.2681340
32 3.52 0.2932812

Table 3.1.2: Execution times for a varying number of processors

6

3.2 Weak Scalability

For the weak scalability experiments, I could either vary the input size or the number of stencil
applications. Thinking that maybe inputs with more number of applications will take more time, I
decided to instead keep using the input1000000.txt file and instead vary the size of the problem by
changing the num_values variable. The following 2 figures show the weak scalability speedup and
efficiency, respectively.

Figure 3.2.2: Weak Scalability speedup vs number of processors

Figure 3.2.3: Efficiency of the code for weak scalability. The efficiency is calculated as The Actual Speedup
The Ideal Speedup

7

Beside the above figures, I have a table that shows the time and speedup gotten for varying number of
processors/size of problem:

of Processors Size of Problem (x106 Speedup Time(s)
1 1 1.00 0.776858
2 2 2.89 0.538182
4 4 2.76 1.126565
8 8 3.72 1.672383
12 12 4.87 1.915068
16 16 8.03 1.548688
20 20 10.39 1.495444
24 24 12.19 1.529725
28 28 13.15 1.654181
32 32 13.83 1.796925

4 Discussion & Conclusion

Strong Scalability

Regarding the strong scaling performance, the experiments showed results that aren’t very good
where the speedup doesn’t increment proportionally with respect to the number of processors. The
explanation could be that the communication overhead going on in the program might turn into a
bottleneck as the number of processes.

Worth noting is that Amdahl’s law can be to make sense of some part of this issue.

Speedup =
1

s+ p
N

where s is the extent of execution time spent on the sequential part of the code, p is the extent of
execution time spent on the parallel part of the code and N is the number of processors.

On the other hand, the left subplot of figure 3.1.1 shows us the execution time (speedup vs number of
processors) for processor unit 0 which proves the performance improvements when increasing the
number of processors.

Honestly speaking, I thought that these results would have surfaced if I used blocking communication
functions like MPI_Send/MPI_Rec or MPI_Sendrecv,as it felt that blocking communication have a
higher chance of getting the results I got. This I thought was a little weird but didn’t really find an
explanation for why it happened, so to find the reason for this phenomena, further work should be
done.

Weak Scalability

The results of the weak scalability, for the most part, live up to my expectations and assumptions.
The program’s performance and speedup increases with the increase of the number of processors
used, but this performance increase is nowhere near the ideal scaled speedup. Here Gustafson’s law
can be introduced to make sense of this peculiarity.

Scaled Speedup = s+ p×N

where N is the number of processes, p is the proportion of execution time spent on the parallel part of
the code, and s is the proportion of execution time spent on the serial part pf the code.

With Gustafson’s law the scaled speedup increases straightly concerning the number of processors
(with an incline smaller than one), and there is no cutoff (upper limit) for the scaled speedup. The
plot of weak scalability efficiency also shows how efficiency of the program decreases when using
more processors.

8

Appendix

Parallelized code stencil_mpi.c

/*
@desc
This script is the parallelized version of the serial code stencil.c
script that applies a 5-point stencil application.
@author
Alhassan Jawad
@since
13-04-2024
@version
1.1.5
*/
#include "stencil.h"

int main(int argc, char **argv) {
//--
// Check if the number of arguments is correct

if (4 != argc) {
printf("Usage: stencil input_file output_file number_of_steps\n");
return 1;

}
//--
// Declare initial variables

char *input_name = argv[1];
char *output_name = argv[2];
int num_steps = atoi(argv[3]);
int num_values; // Total number of values
int data_chunk; // Values for each processor

//--
// Initilize MPI setup

int rank, size;
MPI_Request request[4];
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

// Read the input file
double *input = 0;
double *output = 0;

if (rank == 0){
if (0 > (num_values = read_input(input_name, &input))) {

return 2;
}
// Dynamic memory allocation

if (NULL == (output = malloc(num_values * sizeof(double)))) {
perror("Couldn’t allocate enough memory for output");
return 2;

}
}

//--

9

// Stencil values
MPI_Bcast(&num_values, 1, MPI_INT, 0, MPI_COMM_WORLD);
double h = 2.0*PI/num_values;
const int STENCIL_WIDTH = 5;
const int EXTENT = STENCIL_WIDTH/2;
const double STENCIL[] = {1.0/(12*h), -8.0/(12*h), 0.0, 8.0/(12*h), -1.0/(12*h)};

data_chunk = num_values / size;
double *local_input = (double *)malloc((data_chunk + 2*EXTENT) * sizeof(double));
double *local_output = (double *)malloc((data_chunk + 2*EXTENT) *

sizeof(double));
MPI_Scatter(input, data_chunk, MPI_DOUBLE, local_input+EXTENT, data_chunk,

MPI_DOUBLE, 0, MPI_COMM_WORLD);
//--
// Start timer & define neighbors

double start_time = MPI_Wtime();
int left = rank - 1;
if (left < 0) {left = size - 1;}
int right = rank + 1;
if (right > size -1) {right = 0;}

//--

10

// Repeatedly apply stencil
for (int s = 0; s < num_steps; s++) {

// Send data to left/right neighbor
// Receive data from right/left neighbor

MPI_Isend(local_input+EXTENT, EXTENT, MPI_DOUBLE, left, 000, MPI_COMM_WORLD,
&request[0]);

MPI_Irecv(local_input+data_chunk+EXTENT, EXTENT, MPI_DOUBLE, right, 000,
MPI_COMM_WORLD, &request[1]);

MPI_Isend(local_input+data_chunk, EXTENT, MPI_DOUBLE, right, 111,
MPI_COMM_WORLD, &request[2]);

MPI_Irecv(local_input, EXTENT, MPI_DOUBLE, left, 111, MPI_COMM_WORLD,
&request[3]);

// Apply stencil
for (int i=2*EXTENT; i<data_chunk; i++) {

double result = 0;
for (int j=0; j<STENCIL_WIDTH; j++) {

int index = i - EXTENT + j;
result += STENCIL[j] * local_input[index];

}
local_output[i] = result;

}
// Wait for communication to complete

MPI_Wait(&request[1], MPI_STATUS_IGNORE);
for (int i = data_chunk; i < data_chunk+EXTENT; i++) {

double result = 0;
for (int j = 0; j < STENCIL_WIDTH; j++) {

int index = i - EXTENT + j;
result += STENCIL[j] * local_input[index];

}
local_output[i] = result;

}

MPI_Wait(&request[3], MPI_STATUS_IGNORE);
for (int i = EXTENT; i < 2*EXTENT; i++) {

double result = 0;
for (int j = 0; j < STENCIL_WIDTH; j++) {

int index = i - EXTENT + j;
result += STENCIL[j] * local_input[index];

}
local_output[i] = result;

}
// Swap input and output, locally of course

if (s < num_steps-1) {
double *tmp = local_input;
local_input = local_output;
local_output = tmp;

}
}

//--

11

// Stop timer & end MPI
double time_taken = MPI_Wtime() - start_time;
double max_time;
MPI_Reduce(&time_taken, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);

MPI_Gather(local_output+EXTENT, data_chunk, MPI_DOUBLE, output, data_chunk,
MPI_DOUBLE, 0, MPI_COMM_WORLD);

if (rank==0){
printf("%f\n", max_time);
// Write the output to the output file

#ifdef PRODUCE_OUTPUT_FILE
if (0 != write_output(output_name, output, num_values)) {

return 2;
}
#endif
free(input);
free(output);

}

free(local_input);
free(local_output);
MPI_Finalize();
return 0;

}

//--

12

// Changed nothing below this line
int read_input(const char *file_name, double **values) {

FILE *file;
if (NULL == (file = fopen(file_name, "r"))) {

perror("Couldn’t open input file");
return -1;

}
int num_values;
if (EOF == fscanf(file, "%d", &num_values)) {

perror("Couldn’t read element count from input file");
return -1;

}
if (NULL == (*values = malloc(num_values * sizeof(double)))) {

perror("Couldn’t allocate memory for input");
return -1;

}
for (int i=0; i<num_values; i++) {

if (EOF == fscanf(file, "%lf", &((*values)[i]))) {
perror("Couldn’t read elements from input file");
return -1;

}
}
if (0 != fclose(file)){

perror("Warning: couldn’t close input file");
}
return num_values;

}

int write_output(char *file_name, const double *output, int num_values) {
FILE *file;
if (NULL == (file = fopen(file_name, "w"))) {

perror("Couldn’t open output file");
return -1;

}
for (int i = 0; i < num_values; i++) {

if (0 > fprintf(file, "%.4f ", output[i])) {
perror("Couldn’t write to output file");

}
}
if (0 > fprintf(file, "\n")) {

perror("Couldn’t write to output file");
}
if (0 != fclose(file)) {

perror("Warning: couldn’t close output file");
}
return 0;

}

13

	Problem formulationTaken directly from the Assignment PDF
	Provided files
	The Serial Code
	Requirements for the parallelized code

	Parallelization
	Performance
	Strong Scalability
	Weak Scalability

	Discussion & Conclusion

